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1. Introduction and summary

Energy dissipation of a heavy quark moving through a hot plasma is both theoretically

interesting and experimentally relevant [1 – 17]. A high energy particle moving through a

thermal medium is an example of a non-equilibrium dissipative system. The particle will

lose energy to the surrounding medium, leading to an effective viscous drag on the motion of

the particle. In a weakly coupled quark-gluon plasma, the dominant energy loss mechanisms

are two-body collisions with thermal quarks and gluons, and gluon bremsstrahlung (see,

for example, ref. [11]). Which mechanism dominates depends on the rapidity of the quark.
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1.1 Heavy ion collisions

Most previous work on the rate of energy loss by a charged particle moving in a plasma

is based on perturbative weak-coupling approximations [1 – 12, 14], but one would like

to understand the dynamics in strongly coupled plasmas. The specific question of the

energy loss rate of a moving quark in a strongly coupled non-Abelian plasma is of more

than theoretical interest. At RHIC, collisions of gold nuclei at 200 GeV per nucleon are

believed to produce a quark-gluon plasma which, throughout most of the collision, should

be viewed as strongly coupled [18, 19]. For the early portion of the collision (but after

apparent thermalization) a temperature T ≈ 250 MeV is inferred, with a strong coupling

αs on this scale of perhaps 0.5.

Charm quarks (as observed through the production of D mesons) provide several im-

portant observables. One involves the elliptic flow, denoted v2(pt), which is a measure of

the azimuthal anisotropy of produced hadrons with respect to the reaction plane. The

measurement of a large elliptic flow for light hadrons is one of the significant pieces of

evidence supporting the claim that the quark-gluon plasma produced in RHIC collisions

responds like a nearly ideal fluid with a small mean free path [20 – 28]. Since the mass of

a charm quark, m ≈ 1.4 GeV, is large compared to the temperature, one naively expects

charm quarks to equilibrate more slowly than light quarks. Because elliptic flow is pri-

marily generated early in the collision, slow thermalization of charm quarks should imply

diminished elliptic flow for charmed hadrons. The extent of the delay in thermalization,

and the resulting suppression of elliptic flow, depends on the charm quark energy loss

rate [11].

Another detectable effect sensitive to the rate of energy loss of quarks moving through

the plasma is jet quenching. Within the ball of plasma formed by the collision of two large

nuclei, a quark (or antiquark) from a qq̄ pair produced near the center of the ball is less

likely to reach the edge with sufficient energy to form a detectable jet (after hadronization)

than a quark from a qq̄ pair formed near the surface of the expanding plasma. But if one

quark from a pair created near the surface escapes and forms a jet, then the other quark,

recoiling in the opposite direction, will typically have to travel much farther through the

plasma before it can escape. If the rate of energy loss to the plasma is sufficiently large,

then one should, and in fact does, see a suppression of back-to-back jets (relative to pp

collisions). A related quantity also sensitive to this effect is the suppression factor RAA(pt),

which is the ratio of the D meson spectrum in Au-Au collisions to that in pp collisions.

1.2 N = 4 supersymmetric Yang-Mills theory

In this paper we present a calculation of the energy loss rate for quarks moving through a

plasma of N = 4 supersymmetric SU(Nc) Yang-Mills theory (SYM), in the limit of large

’t Hooft coupling, λ ≡ g2
YM Nc À 1, and a large number of colors, Nc → ∞. The quarks

whose dynamics we will study are fundamental representation particles introduced into

N = 4 SYM by adding an N = 2 hypermultiplet with arbitrary mass.1 In the large Nc

1More explicitly, this means adding a Dirac fermion and 2 complex scalars, all in the fundamental

representation, with a common mass and Yukawa interactions which preserve N = 2 supersymmetry.
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limit, fundamental representation fields have negligible influence on bulk properties of the

plasma. One may view the quarks as test particles which serve as probes of dynamical

processes in the background N = 4 plasma.

The reason for studying N = 4 super-Yang-Mills is simple — it is easier than QCD.

There are no good approximation techniques which are generally applicable to real-time dy-

namical processes in strongly coupled quantum field theories. Thermal relaxation or equi-

libration rates, such as the energy loss rate of a moving heavy quark, cannot be extracted

directly from Euclidean correlation functions and hence are not accessible in Monte Carlo

lattice simulations.2 But for the specific case of N = 4 SU(Nc) supersymmetric Yang-Mills

theory, the AdS/CFT conjecture (or gauge/string duality) states that this theory is ex-

actly equivalent to type IIB string theory in an AdS5×S5 gravitational background, where

AdS5 is five dimensional anti-de Sitter space and S5 is a five dimensional sphere [30 –

32].3 At large Nc and large λ, the string theory can be approximated by classical type

IIB supergravity. This approximation allows completely nonperturbative calculations in

the quantum field theory to be mapped into problems in classical general relativity. In

this context, raising the temperature of the gauge theory corresponds to introducing a

black hole (or more precisely, a black brane) into the center of AdS5 [33]. According to the

AdS/CFT dictionary, the Hawking temperature of the black hole becomes the temperature

of the gauge theory.

At zero temperature, the properties of N = 4 supersymmetric Yang-Mills theory are

completely different from QCD. N = 4 SYM is a conformal theory with no particle spec-

trum or S-matrix, while QCD is a confining theory with a sensible particle interpretation.

But at non-zero temperatures (and sufficiently high temperatures in the case of QCD),

both theories describe hot, non-Abelian plasmas with Debye screening, finite spatial corre-

lation lengths, and qualitatively similar hydrodynamic behavior [34]. The major difference

is that all excitations in N = 4 SYM plasma (gluons, fermions, and scalars) are in the

adjoint representation, while hot QCD plasma only has adjoint gluons and fundamental

representation quarks. There are a variety of reasons to think that many properties of

strongly coupled non-Abelian plasmas may be insensitive to details of the plasma compo-

sition or the precise interaction strength. In N = 4 SYM, bulk thermodynamic quantities

such as the pressure, energy or entropy densities, as well as transport coefficients such as

shear viscosity, have finite limits as the ’t Hooft coupling λ → ∞. The pressure divided

by the free Stefan-Boltzmann limit (which effectively just counts the number of degrees

of freedom) in N = 4 SYM is remarkably close to the corresponding ratio in QCD at

temperatures of a few times Tc where it is strongly coupled [35]. The dimensionless ratio

of viscosity divided by entropy density equals 1/4π in N = 4 SYM, as well as in all other

theories with gravity duals [36, 37] in the strong ’t Hooft coupling limit. And this value,

which is lower than any weakly coupled theory or known material substance [34], is in good

agreement with hydrodynamic modeling of RHIC collisions [18, 19]. These features have

led some authors to speculate about “universal” properties of strongly coupled plasmas.

2See, however, ref. [29] for a recent effort to extract an estimate of the damping rate by fitting a

parametrized model of the spectral density to lattice data for the Euclidean current-current correlator.
3This conjecture is unproven, but is supported by a very large body of evidence. We assume its validity.
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In the dual gravitational description, a fundamental representation hypermultiplet

corresponds to the addition of a D7-brane to the black hole geometry. This D7-brane

wraps an S3 ⊂ S5 and wraps all of the Schwarzschild-AdS geometry down to a minimal

radius (which is dual to the mass of the quark) [38]. The addition breaks the amount of

supersymmetry in the theory down to N = 2. According to the AdS/CFT dictionary, an

open string whose endpoints lie on the D7-brane is a meson, with the endpoints of the string

representing the quarks. At non-zero temperature, one can also have open strings which

stretch from the D7-brane down to the black hole horizon. The existence of such solutions

reflects the fact that N = 4 super-Yang-Mills theory, at any non-zero temperature, is

a deconfined plasma in which test quarks and antiquarks are not bound by a confining

potential. We will extract the energy loss rate of moving quarks in this gauge theory by

studying the behavior of the endpoints of both types of such open string configurations.

To our knowledge, this is the first quantitative, nonperturbative calculation of the energy

loss rate of a moving massive quark in any strongly coupled quantum field theory.4

1.3 A toy model, and the plan of attack

The following toy model helps to clarify some of the issues which will arise in our analysis of

heavy quark damping. Consider a particle with momentum p moving in a viscous medium

and subject to a driving force f . Its equation of motion may be modeled as

ṗ = −µ p + f , (1.1)

where µ is the damping rate (or friction coefficient). To infer information about µ from

motion of the particle, it is useful to consider two different situations. First, if one examines

steady state behavior under a constant driving force, then ṗ = 0 implies that p = f/µ. If

the particle has an (effective) mass m and its motion is non-relativistic, so that p = mv,

then the limiting speed v = f/(mµ). Hence, a measurement of the steady state speed for

a known driving force determines the combination mµ, but not µ alone.

Second, if the driving force f = 0, then a non-zero initial momentum will relax expo-

nentially with a decay rate of µ, p(t) = p(0) e−µt. If momentum is proportional to velocity,

then the speed of the particle will show the same exponential relaxation. A measurement

of ṗ/p, or v̇/v, will thus determine the damping rate µ. The important point is that this

second scenario is insensitive to the value of the mass m.

We will mimic these two gedanken experiments in our analysis of open string dynamics

in the AdS5 black hole background. In section 2 we introduce notation, describe the

geometry explicitly, and derive the relevant equations of motion for an open string. We

examine single quark solutions in section 3. We first find and discuss a stationary analytic

solution which may be viewed as describing a quark, of any mass, moving in the presence

of a constant external electric field whose energy (and momentum) input precisely balances

the energy and momentum loss due to plasma damping. Hence, this stationary solution

provides the answer to the first gedanken experiment, and yields a measure of the (effective

thermal) quark mass times the damping rate µ. We then turn to the analogue of the

4See ref. [39] for an interesting qualitative attempt to understand jet quenching via AdS/CFT.
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second gedanken experiment, and analyze the late time behavior of a moving quark in the

absence of any external force. Looking at the low velocity, late time behavior allows us

to linearize the string equation of motion about the static solution, reducing the problem

to a calculation of the quasi-normal modes of the resulting linear operator. This second

gedanken experiment yields the damping rate µ directly.

Both the stationary analytic solution, and the quasi-normal mode analysis involve

strings which are sensitive to the geometry arbitrarily close to the black hole horizon. This

near horizon dependence turns up a number of subtle issues involving infrared sensitivity

and the extent to which the total energy of a moving quark is well-defined. These issues

are discussed in section 3, but to insure that our interpretation is sensible, in section 4 we

study quark-antiquark solutions, or string configurations in which both endpoints lie on the

D7-brane. These mesonic configurations avoid the infrared subtleties of the single quark

solutions, but at the cost of requiring the numerical solution of nonlinear partial differential

equations. Nevertheless, we are able to find back-to-back quark/antiquark solutions with

external forcing in which the quark and antiquark move apart at constant velocity, as

well as unforced back-to-back solutions in which the quark and antiquark decelerate while

separating monotonically. The damping rate may be extracted from these quark/antiquark

solutions when the particles are widely separated, and the results confirm and extend the

previous analysis based on single quark solutions.

We discuss some conceptual issues, including the effects of fluctuations which must

inevitably accompany dissipation in section 5. A number of other interesting analytic

solutions are briefly described in appendix A. Appendix B presents the result of the

quasi-normal mode analysis in three dimensions, where a completely analytic treatment is

possible. The final appendix C briefly discusses integration technique and numerical error

in the non-linear PDE solutions of section 4.

1.4 Summary of results

For a quark moving with arbitrary velocity v, we find that the rate at which it loses energy

and momentum to the plasma is given by

dp

dt
=

1

v

dE

dt
= −π

2

√
λ T 2 v√

1 − v2
. (1.2)

This momentum loss rate (or viscous drag), as a function of velocity, is independent of the

quark mass. Note that the viscous drag may also be interpreted as the energy loss per unit

distance traveled, since dE
dx = 1

v
dE
dt .

Re-expressing the viscous drag in terms of momentum, instead of velocity, requires

knowledge of the dispersion relation relating the energy E and momentum p, and hence

the relation between velocity v = dE/dp and momentum. As discussed below, the scale of

thermal corrections to the energy of the quark in the strongly-coupled N = 4 medium is

given by

∆m(T ) ≡ 1

2

√
λT . (1.3)
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A heavy quark should be viewed as one whose mass m is large compared to ∆m(T ) (not just

large compared to T ).5 If m À ∆m(T ), then thermal corrections to the zero-temperature

relativistic dispersion relation are negligible. In this regime, the viscous drag (1.2) is

equivalent to
dp

dt
= −µ p (1.4)

with a friction coefficient

µ = πT
∆m(T )

m
[heavy quarks, m À ∆m(T )] . (1.5)

The momentum independence of the friction coefficient is a surprising result which differs

from the behavior of a weakly coupled plasma.6

The dispersion relation of lighter quarks, for which the ratio m/∆m(T ) is of order one,

is substantially influenced by the medium. A quark at rest in the medium corresponds to a

straight string stretching from the D7-brane down to the horizon. Such a quark, immersed

in the thermal N = 4 medium at temperature T , has a rest energy Mrest(T ) which differs

from its Lagrangian mass m. Determining this relation requires solving (numerically) for

the change in the embedding of the D7-brane induced by the black hole horizon [41, 42].

Asymptotically,7

Mrest(T ) = m

{

1 − ∆m(T )

m
+

1

8

(∆m(T )

m

)4
− 5

128

(∆m(T )

m

)8
+ O

[

(∆m(T )

m

)12
]}

.

(1.6)

Truncating after three terms gives a result which is accurate for Mrest + ∆m to within 1%.

As m/∆m(T ) approaches a critical value of approximately 0.92, the thermal rest mass

nearly vanishes.8 Our semiclassical string analysis is only valid when the zero temperature

mass exceeds this critical value. The resulting dependence is plotted in figure 1.

5In theories with unbroken N = 2 supersymmetry the Lagrangian (or bare) mass does not get renormal-

ized. So there is no need to distinguish between bare and renormalized mass, or deal with scale dependence

in the mass — it is a physical parameter. The heavy mass regime, m À ∆m(T ), may equivalently be

viewed as the low temperature regime, T ¿ 2m/
√

λ. In this form, one sees that the relevant scale which

distinguishes low versus high temperature is not m, but rather m/
√

λ. This is the scale of the mass of

deeply bound qq̄ states which form in zero temperature N = 4 SYM with massive fundamental representa-

tion quarks [40]. So low temperature corresponds to the regime where these mesonic bound states form a

dilute, non-relativistic gas.
6For a heavy quark moving through a weakly coupled plasma, the dominant mechanism of energy loss

is two body scattering off thermal quarks and gluons, provided 1 − v2 is not parametrically small. The

resulting loss rate µ is a complicated function of velocity with logarithmic dependence on 1 ± v [11]. Only

for small velocity is the energy loss rate well modeled by eq. (1.4) with a constant value of µ. For ultra-

relativistic quarks the dominant scattering process switches from two-to-two scattering events, in which

the momentum transfer is a small fraction of the heavy quark momentum, to gluon bremsstrahlung in

which each gluon emission can change the heavy quark momentum by an O(1) amount. In this regime,

characterizing the energy loss as a smooth differential process, as in eq. (1.4), no longer makes any sense.
7The coefficient of the (∆m/m)8 term in eq. (1.6) was determined by a numerical fit, not analytically,

and may not be exact.
8The minimal value of Mrest at this point is 0.02∆m(T ). When one decreases the mass beyond this point

the location of the D7-brane jumps discontinuously to the horizon and Mrest vanishes. See refs. [41 – 44] for

discussion of this transition.
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Figure 1: The thermal rest mass (or energy) Mrest and the kinetic mass Mkin of a quark immersed

in the N = 4 plasma at temperature T , as functions of the zero-temperature mass m, with all

masses measured in units of ∆m(T ) = 1

2

√
λT . At m ≈ 0.92 ∆m(T ), the location of the D7-brane

jumps discontinuously to the horizon [41 – 44].

The dispersion relation of a moving quark in the thermal medium need not be Lorentz

invariant since the plasma defines a preferred rest frame. For non-relativistic motion, the

dispersion relation will have the form

E(p) = Mrest(T ) +
p2

2Mkin(T )
+ O(p4) . (1.7)

The effective kinetic mass Mkin(T ) is not the same as the thermal rest mass Mrest(T ). For

heavy quarks, we find that Mkin(T ) differs negligibly from the thermal rest mass,

Mkin(T ) = Mrest(T ) + O
[

m
(∆m(T )

m

)2 ]

. (1.8)

The kinetic mass Mkin(T ) is also plotted in figure 1. As m/∆m(T ) approaches the lower

critical value of 0.92, the kinetic mass Mkin(T ) has a limiting value just slightly greater

than 1
2∆m(T ). As m/∆m(T ) → ∞, both Mkin and Mrest approach m − ∆m(T ).

For not-so-heavy quarks moving relativistically, we can only infer the dispersion rela-

tion from analysis of the time-dependent numerical solutions discussed in section 4. We

do not have any analytic derivation, but all our numerical results are consistent with the

thermal dispersion relation

E(p) = Mrest(T ) − Mkin(T ) +
√

p2 + Mkin(T )2 , (1.9)

which reduces to eq. (1.7) for low momentum, and gives v ≡ dE/dp = p/
√

p2 + Mkin(T )2.

For this relation between velocity and momentum, the viscous drag (1.2) is equivalent to

ṗ = −µp with a friction coefficient

µ = πT
∆m(T )

Mkin(T )
=

π

2

√
λT 2

Mkin(T )
. (1.10)
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As the quark mass decreases, the kinetic mass Mkin(T ) has a lower limit of 1
2∆m(T ), and

hence the friction coefficient has a remarkably simple upper limit,9

µ ≤ 2πT , (1.11)

which turns out to be dimension independent. It is tempting to speculate, along the lines

of ref. [34], that the ratio µ/T is bounded above by 2π even in more general theories.

Knowledge of the viscous drag on a quark is equivalent to knowledge of the diffu-

sion constant for quark “flavor”. The relation is D = T/(µMkin), so our result (1.10) is

equivalent to a flavor diffusion constant

D =
1

π∆m(T )
=

2

π
√

λT
. (1.12)

As discussed in section 5, this same information may also be recast as the rate of change of

the mean square transverse momentum of a quark initially moving in a given direction,10

d

dt

〈

(~p⊥)2
〉

=
4T 2

D
= 4π∆m(T )T 2 = 2π

√
λT 3 . (1.13)

This quantity, divided by the velocity of the quark (to give a rate of change per unit

distance traveled) is sometimes called the “jet quenching parameter” q̂ [45].

Physically characterizing the mechanism responsible for the energy loss (1.10) in terms

of some microscopic picture of the dynamics of the N = 4 SYM field theory is a challenge.

In the AdS dual description, energy and momentum flow along the string which hangs

down from the quark, away from the D7-brane and toward the black hole horizon. It is

clear that the portion of the string which lies close to the horizon should be thought of as

describing long distance deformations of the medium surrounding the quark. The energy

loss should not be regarded as resulting from scattering off excitations in the thermal

medium. Any scattering would correspond to small fluctuations in the string worldsheet,

and these fluctuations are suppressed by inverse powers of the ’t Hooft coupling (or string

tension). Nor is the energy loss due to radiation of glueballs, which correspond to closed

strings breaking off of the open string and whose emission is suppressed by powers of 1/Nc.

For relativistic velocities, v → 1, there is nothing in the classical string dynamics which is

reminiscent of near-collinear gluon bremsstrahlung which (at weak coupling) can cause a

9Strictly speaking, µ equals 2πT only in the limit where Mrest = 0, i.e., for an unstable D7-brane

configuration. As the D7-brane is stable already for Mrest = 0.02∆m(T ), this limiting value of µ is very

close to the actual value for the lightest accessible quark masses.
10This result for the rate of change of mean square transverse momentum follows from modeling the effects

of fluctuations in the momentum of the quark by a simple Langevin equation in which the noise, characteriz-

ing stochastic fluctuations in the force exerted on the quark, has an isotropic velocity-independent variance.

At weak coupling [11], the friction coefficient and the stochastic force variance both show significant velocity

dependence unless v ¿ 1. Our strong coupling result (1.10) for the friction coefficient is velocity indepen-

dent and valid for arbitrary values of the quark’s rapidity, but we do not have a direct determination of the

stochastic force variance for arbitrary velocities. If the force variance shows the same velocity independence

as the friction coefficient, then the result (1.13) will also be valid for arbitrary rapidity, but if this is not

true, then the result (1.13) will only be valid for non-relativistic motion with v ¿ 1.

– 8 –
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fast moving quark to lose an O(1) fraction of its momentum in a single scattering. Rather,

the energy transfer from the moving quark to the surrounding plasma should be regarded

as analogous to the formation of a wake in the coherent polarization cloud surrounding a

charged particle moving through a polarizable medium, or the wake on the surface of water

behind a moving boat.

Ultimately, the energy transfered to the medium from the moving quark must appear

as heating and outward hydrodynamic flow in the non-Abelian plasma surrounding the

quark. To see this flow directly, one would like to evaluate the expectation value of T µν(x)

in the presence of the moving quark. The AdS/CFT correspondence provides a recipe for

this calculation, but its implementation is difficult. The expectation value of T µν corre-

sponds to boundary fluctuations in the gravitational metric. Deriving these fluctuations

from the energy distribution of the string requires graviton propagators in the black hole

geometry, for which no closed form analytic expression is currently available. Performing

the computations required to evaluate 〈T µν(x)〉 would allow one to examine the form of the

wake behind a moving quark and, for example, see the sonic boom produced by a quark

moving faster than the speed of sound. Sadly, we leave such a study for future work.

2. Open string dynamics in the black brane background

The AdS/CFT correspondence [30 – 32] posits an equivalence between N = 4 SU(Nc)

supersymmetric Yang-Mills theory and type IIB string theory in a AdS5 ×S5 background.

Type IIB strings are characterized by two numbers: a string coupling gs and a tension

T0, or equivalently a fundamental string length scale `s ≡ (2πT0)
−1/2. The background is

characterized by the radius of curvature of the AdS5 and of the S5, which must be equal

and will be denoted by L.

The AdS/CFT correspondence provides a dictionary between these two seemingly

very different physical theories. One important entry in this dictionary is the relationship

between the string coupling and the Yang-Mills coupling,

4πgs = g2
YM , (2.1)

and an equally important entry is the relationship between the string tension, the radius

of curvature L, and the ’t Hooft coupling,

(L/`s)
4 = λ ≡ g2

YM Nc . (2.2)

For the convenience of readers who are not completely conversant with the AdS/CFT

correspondence, these relations, plus additional ones which will appear as we progress, are

summarized in table 1.

2.1 Adding a black hole

The gravity dual of finite temperature N = 4 SU(Nc) super Yang-Mills theory is S5 times

the five dimensional AdS-black hole solution [33]. This solution is a geometry in which a

black hole (or more properly, a black brane with a flat four dimensional horizon) is placed

– 9 –
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AdS N=4 SYM quantity

L – AdS5 and S5 curvature radius

`s λ−1/4L fundamental string scale [ ≡
√

α′]
(L/`s)

4 λ ’t Hooft coupling [ ≡ g2
YM Nc]

T0

√
λ

2π L−2 string tension [ ≡ (2π`2
s)

−1]

gs
1
4π g2

YM string coupling

uh πT black hole horizon radius ( × L−2)

uh/π T temperature

um
2π√

λ
(Mrest+∆m) minimal radius of D7-brane ( × L−2)

T0L
2 uh ∆m(T ) thermal rest mass shift [ = 1

2

√
λT ]

T0L
2 (um−uh) Mrest(T ) static thermal quark mass

Table 1: AdS/CFT translation table. The static thermal quark mass Mrest(T ) is the free energy

of quark at rest in the N = 4 SYM plasma. It equals the Lagrangian quark mass m in the zero

temperature limit.

inside AdS space. The metric of the resulting AdS black brane solution in d+1 dimensions

may be written as

ds2 = L2

(

du2

h(u)
− h(u) dt2 + u2δij dxidxj

)

, (2.3)

where

h(u) = u2

[

1 −
(uh

u

)d
]

. (2.4)

Since the case of arbitrary dimension is usually as easy to compute as the specific d = 4

case of interest, we will leave d arbitrary in much of this section. Our radial coordinate u

has been rescaled by a factor of L−2; some authors use r = L2 u instead [46]. The black

hole horizon is located at u = uh where h(u) vanishes.

The Hawking temperature of the black hole equals the temperature of the field theory

dual. The horizon radius is related to the Hawking temperature by

T =
d

4π
uh , (2.5)

or uh = π T in d = 4.

Introducing a flavor of fundamental representation quarks corresponds, in the gravity

dual of the four dimensional field theory, to the addition of a D7-brane [38]. This D7-brane

wraps an S3 inside the transverse S5 and fills all of the asymptotically AdS space down to

some minimum radial value u = um. We require that um > uh. Given an open string that

ends on this D7-brane, the quark is reinterpreted as the string’s endpoint. The choice of

um is equivalent to the choice of mass for the quark; the relation between um and quark

mass will be discussed in section 3.

2.2 String equations of motion

The dynamics of an open string ending on the D7-brane depends on the background geom-

etry, but the back reaction of the string on the geometry is negligible and may be neglected.
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The negligible back reaction reflects the fact that fundamental representation quarks only

make an O(Nc) contribution to the free energy which is small, in the Nc → ∞ limit, relative

to the O(N2
c ) contributions of the adjoint representation fields of N = 4 SYM.

The dynamics of a classical string is governed by the Nambu-Goto action,

S = −T0

∫

dσ dτ
√

− det gab . (2.6)

The coordinates (σ, τ) parametrize the induced metric gab on the string world-sheet. Let

Xµ(σ, τ) be a map from the string world-sheet into space-time, and define Ẋ = ∂τX,

X ′ = ∂σX, and V · W = V µW νGµν where Gµν is the space-time metric (2.3). Then,

writing det gab = g, one has

−g = (Ẋ · X ′)2 − (X ′)2(Ẋ)2 . (2.7)

We will limit our attention to strings which lie within a three dimensional slice of the

asymptotically AdS space in which all but one (call it x) of the transverse coordinates xi

vanish. So X(σ, τ) will be a map to (t, u, x). Choosing a static gauge where σ = u and

τ = t, the string worldsheet is described by a single function x(u, t). With this choice, one

finds that

Ẋ · X ′ = L2
(

u2ẋx′) , (2.8a)

(X ′)2 = L2
[

h−1 + u2(x′)2
]

, (2.8b)

(Ẋ)2 = L2
[

−h + u2(ẋ)2
]

, (2.8c)

and the induced metric becomes

gab = L2

[

−h + u2(ẋ)2 u2 ẋx′

u2 ẋx′ 1
h + u2(x′)2

]

. (2.9)

The determinant of gab is

− g

L4
= 1 − h−1 u2(ẋ)2 + hu2(x′)2 . (2.10)

From this determinant, the equation of motion that follows from the Nambu-Goto action

is
∂

∂u

(

hu2 x′
√−g

)

− u2

h

∂

∂t

(

ẋ√−g

)

= 0 . (2.11)

Useful to us in the following are general expressions for the canonical momentum

densities associated to the string,

π0
µ = −T0 Gµν

(Ẋ · X ′)(Xν)′ − (X ′)2(Ẋν)√−g
, (2.12a)

π1
µ = −T0 Gµν

(Ẋ · X ′)(Ẋν) − (Ẋ)2(Xν)′√−g
. (2.12b)
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For our string, these expressions reduce to







π0
x

π0
u

π0
t






=

T0L
4

√−g







ẋ u2 h−1

−ẋ x′ u2 h−1

−1 − (x′)2 u2 h






,







π1
x

π1
u

π1
t






=

T0L
4

√−g







−x′ u2 h

−1 + (ẋ)2u2 h−1

ẋ x′ u2 h






. (2.13)

The density of energy and x-component of momentum on the string worldsheet are given

by π0
t and π0

x, respectively. Integrating them along the string gives the total energy and

momentum of the string,

E = −
∫

dσ π0
t , p =

∫

dσ π0
x . (2.14)

3. Single quark solutions

3.1 Static strings

Single quark solutions correspond to strings which hang from the D7-brane down to the

black hole horizon. The simplest solution to the string equation of motion (2.11) is just

a constant, x(u, t) = x0. This solution describes a static string stretching from u = um

straight down to the black hole horizon at uh, and clearly represents a static quark at rest in

the thermal medium. We may compute the energy and momentum of such a configuration

using eq. (2.14). The energy

E = T0L
2

∫ um

uh

du = T0L
2 (um − uh) , (3.1)

while the total momentum p (and momentum density π0
x) vanish. This energy must equal

the (Lagrangian) mass m of the quark in the zero temperature limit. Recalling, from

eq. (2.5), that uh is proportional to the temperature, we see that

T0L
2 um = m (zero temperature) . (3.2)

Moving the D7-brane to a larger radius (larger um) increases the mass of the quark; a

D7-brane sitting at the boundary of the (asymptotically) AdS space corresponds to quarks

of infinite mass.

However, raising the temperature affects the relation between the Lagrangian mass m

and the position um of the D7-brane in the gravitational description.11 The result has the

form
T0L

2 um

m
= 1 + g

(T0L
2uh

m

)

, (3.3)

11The D7-brane is a dynamical object whose equations of motion are equivalent to minimizing its world-

volume. The tension of the brane is a negligible perturbation to the background black hole geometry

(suppressed by 1/Nc), but the D-brane does respond to variations in the background geometry by chang-

ing its embedding. According to the AdS/CFT dictionary the mass associated to a given embedding is

determined by the asymptotic form of the D7-brane configuration. For zero temperature this procedure

reproduces eq. (3.2).
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with the correction g(x) behaving (for d = 4) as

g(x) =
1

8
x4 − 5

128
x8 + O(x12) . (3.4)

Retaining just the first two terms in g(x) gives a result for T0L
2um/m which is accurate

to within 1%.

The energy (3.1) of the static string should be interpreted as the free energy of a static

quark sitting in the thermal N = 4 SYM medium.12 In a small abuse of language, we

will refer to this free energy as the static thermal mass, Mrest(T ). Using uh = πT [from

eq. (2.5)] plus T0L
2 =

√
λ

2π , the result is

Mrest(T ) ≡ T0L
2 (um − uh)

= m − ∆m(T ) + m g
(∆m(T )

m

)

, (3.5a)

with

∆m(T ) ≡ T0L
2uh =

1

2

√
λT . (3.5b)

This relation between the static thermal mass Mrest(T ) and the Lagrangian mass m is

plotted in figure 1.

3.2 Moving, straight strings

A rigidly moving string profile x(u, t) = x0 + vt is also a solution to the string equation of

motion (2.11). However, such rigid motion of the string is not physical. The problem is

that −g is not positive definite for this profile. One finds that g vanishes at a critical value

uc given by

(uc)
d =

(uh)d

1 − v2
. (3.6)

For any non-zero velocity, uc > uh and −g is negative in the region uh < u < uc between

the horizon and the critical value of the radius. A negative determinant is often a signal

of superluminal propagation. When g = 0 the induced metric on the string world sheet is

degenerate, and if −g < 0 then the action, energy, and momentum all become complex,

which means this solution must be discarded. By choosing x = vt, we picked inconsistent

initial conditions where parts of the string have a velocity faster than the local speed of

light at t = 0. While time evolution of this initial configuration gives a very simple solution,

it is not physical.

3.3 Moving, curved strings

To find a physical configuration which corresponds to a quark moving at constant velocity,

we will look for stationary solutions of the form

x(u, t) = x(u) + vt . (3.7)

12This static string configuration describes the expectation value of a fundamental representation Wilson

line in thermal N = 4 SYM [47, 48]. In the finite temperature field theory, this expectation value gives

e−βFq , where Fq is the free energy, not the internal energy, of a static quark.
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For string profiles of this form, x′, ẋ, and
√−g are time-independent. The time derivative

term in the equation of motion (2.11) completely drops out and we are left with an ordinary

differential equation
d

du

(

hu2 x′
√−g

)

= 0 (3.8)

where √−g = L2
[

1 − h−1 u2 v2 + hu2 (x′)2
]1/2

. (3.9)

This differential equation is straightforward to integrate. (The v = 0 limit of this equation

appeared in the finite temperature calculation [47, 48] of the AdS Wilson line [49, 50].)

The first integral is
x′

√

−g/L4
=

C v

u2 h
, (3.10)

or

(x′)2 =
C2 v2

u8

[

1 − (uh/u)d
]−2 1 − v2 − (uh/u)d

1 − C2 v2 u−4 − (uh/u)d
, (3.11)

where C is an integration constant. This constant determines the momentum current

flowing along the string. From the expressions (2.13) for these currents, we see that

π1
x = −T0L

2 C v , π1
t = T0L

2 C v2 , (3.12)

showing that these two currents are constant along the length of the string.

Solving for −g yields

−g

L4
=

1 − v2 − (uh/u)d

1 − C2 v2 u−4 − (uh/u)d
. (3.13)

Both numerator and denominator are positive for large u, and negative for u near uh. So

the only way for −g to remain positive everywhere on a string that stretches from the

boundary to the horizon is to have both numerator and denominator change sign at the

same point.13 This condition uniquely fixes C up to a sign,

C = ±
(

ud
h

1 − v2

)2/d
d=4−→ ± u2

h√
1 − v2

. (3.14)

For the specific case of d = 4, −g/L4 reduces to 1 − v2, and we have

x′(u) = ±v
u2

h

h(u)u2
. (3.15)

Integrating x′ yields solutions of the form

x(u, t) = x±(u, t) ≡ x0 ± v F (u; v2) + vt , (3.16)

where the upper sign corresponds to C positive; the lower to C negative, and x0 is the

position of the string at the u = ∞ boundary at time zero. For arbitrary d, F (u; v2) is

13There are other solutions to these equations which have a turn-around point and do not correspond to

strings running from large u down to the horizon. We discuss these other solutions in appendix A.
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Figure 2: A plot of the function F (u) which determines the string profile, in units where uh = 1.
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Figure 3: Schematic drawing of the physical solution (left) in which energy flows toward the

horizon, and the unphysical energy solution (right) in which energy flows away from the horizon.

a hypergeometric function. For d = 4, this function reduces to the velocity independent

expression,

F (u) =
1

2uh

[

π

2
− arctan

(

u

uh

)

− arccoth

(

u

uh

)]

. (3.17)

This function is plotted in figure 2. It vanishes as u → ∞ and diverges to −∞ as u → uh;

its asymptotic behavior is

F (u) =



















− u2
h

3u3
+ O

(u6
h

u7

)

, u → ∞ ;

− 1

4uh
ln

( 2uh

u−uh

)

+
π

8uh
+ O

(u−uh

u2
h

)

, u → uh .

(3.18)

The rate at which energy flows down the string is given by π1
t . As seen in eq. (3.12),

this energy flux is proportional to C. If C is positive, then energy flows down the string

toward the horizon, and the string profile resembles a tail being dragged behind the moving

quark, as illustrated on the left in figure 3. If C is negative, then one has the time-reversed

situation: energy flows upward from the horizon and the tail of string leads the quark.

We postulate (as in ref. [51]) that the physical process we want to describe requires us

to pick purely outgoing boundary conditions at the horizon.14 We have to discard the

time-reversed solution in which energy flows from the black hole to the moving quark.

14Here and elsewhere, outgoing refers to moving out of the physical region and into the black hole.
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The resulting rates at which energy and momentum flow toward the horizon are

π1
t

∣

∣

u=uh
= T0L

2 u2
h

v2

(1 − v2)2/d

d=4−→ π

2

√
λ T 2 v2

√
1 − v2

, (3.19a)

and

−π1
x

∣

∣

u=uh
= T0L

2 u2
h

v

(1 − v2)2/d

d=4−→ π

2

√
λ T 2 v√

1 − v2
, (3.19b)

respectively.

The stationary solution x+(u, t) given by eqs. (3.16) and (3.17) describes an open string

which runs from the AdS boundary at u = ∞ and asymptotically approaches the horizon

at u = uh. By truncating the solution at an arbitrary radius um > uh, one may equally

well regard it as describing an open string running from a D7-brane with minimal radius

um down to the horizon. The rates (3.19) at which energy and momentum flow down the

string are completely independent of um.

Standard Neumann boundary conditions would demand that the momentum flux π1
x

vanish at the flavor brane — so our solution with a constant non-zero π1
x does not satisfy

Neumann boundary conditions. The solution is physical, but there must be a force acting on

the string endpoint and feeding energy and momentum into the string. A constant electric

field on the flavor brane provides precisely such a force. The field alters the Neumann

boundary condition to the force balance condition π1
x = −Ftx.15

Although the flux of energy and momentum in this stationary solution is finite, the total

energy and momentum of the string is infinite, due to the contribution to the integrals (2.14)

close to the horizon. If one simply inserts a lower limit umin > uh, together with an upper

limit equal to the radius um of the D7-brane, then the resulting energy and momentum (in

d = 4) are

E = −
∫ um

umin

du π0
t (u) = T0L

2 1√
1 − v2

[

um − umin + v2Λ(umin)
]

, (3.20a)

p =

∫ um

umin

du π0
x(u) = T0L

2 v√
1 − v2

[um − umin + Λ(umin)] , (3.20b)

where

Λ(umin) ≡ uh

4

[

2 arctan
umin

uh
− 2 arctan

um

uh
− ln

(um + uh)(umin − uh)

(um − uh)(umin + uh)

]

. (3.21)

As umin → uh, this function diverges logarithmically as −1
4 uh ln(umin−uh). The interpre-

tation of this IR divergence will be discussed momentarily.

15D-branes in string theory naturally support gauge fields living on their worldvolume under which the

endpoints of strings are charged. Turning on the worldvolume gauge field will once more change the

embedding of the D7-brane and hence the relation between um and m. Since the results we find for the

motion of the string in the presence of the external field is independent of um (and hence m), the precise

relation between the two in the presence of the field is not important for our purposes. It is, however,

worthwhile noting that the electric field on a D-brane cannot become larger than a critical value, at which

point the force pulling the endpoints of a string apart due to the field wins against the string tension and

the system becomes unstable. This happens when (Ftx/T0)
2 = |gttgxx| = u4 − u4

h. For small mass the

brane will extend down to a small value of u, so there will be a maximum field that the brane can support

(and hence a maximal velocity) that decreases as the quark mass decreases.
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Field theory interpretation. We want to interpret this stationary string solution as

describing the steady-state behavior of a massive quark moving through the N = 4 plasma

under the influence of a constant electric field16 E = Ftx. The quark velocity will asymptot-

ically approach an equilibrium value v at which the rate of momentum loss to the plasma

is balanced by the driving force exerted by the electric field. The rate at which the electric

field does work on the quark, namely v · E , should also equal the rate at which the quark

loses energy to the medium. The results (3.19), plus the force balance condition at the

string endpoint,

π1
x = −E , (3.22)

are completely consistent with this interpretation, provided one regards energy and mo-

mentum flow toward the horizon as energy and momentum transfer to the thermal medium.

If the quark behaves as an excitation with some effective mass M and momentum

p = Mv/
√

1 − v2, then the result (3.19b) for the momentum transfer rate is equivalent to

a momentum loss rate dp/dt = −µp for the quark, with

µM =
π

2

√
λT 2 = πT ∆m(T ) . (3.23)

Just as in the toy model discussed in the Introduction, the momentum flow of our steady

state solution determines µM , but not µ or M individually. Note that µM is independent

of the flavor brane location um, and hence is independent of the physical quark mass.

The energy of the string should be regarded as the total excess free energy of the system

— the free energy minus its equilibrium value at the given temperature. In other words, the

energy of string includes all the effects of the disturbance to the N = 4 plasma produced

by the moving quark. The stationary moving string solution is describing a system in

which a quark has been forcibly dragged through the plasma (which is infinite in extent)

for an unbounded period of time. The constant rate of work done by the external electric

field thus translates into an infinite input of energy to the plasma. This unbounded input

of energy is the physical origin of the IR divergence in the string energy, as may be seen

explicitly by noting that the logarithmically divergent function Λ(umin) appearing in the

energy and momentum (3.20) is proportional to the difference in position (in x) between

the two ends of the cut-off string,

Λ(umin) = u2
h

∣

∣

∣

∣

∆x(umin)

v

∣

∣

∣

∣

(3.24)

with

∆x(umin) ≡ x+(um, t) − x+(umin, t) . (3.25)

Comparison with eq. (3.19) shows that the cut-off string energy and momentum are just

a boosted static energy plus the net input of energy and momentum required to move the

16E is a “real” electric field — a U(1) gauge field coupled to quark flavor, having nothing to do with the

SU(Nc) gauge fields. Such an electric field acts on fundamental representation quarks, but has no effect on

any of the N = 4 SYM fields.
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quark a distance ∆x at velocity v,

E = T0L
2 (um−umin)√

1 − v2
+

1

v

dE

dt
∆x(umin) , (3.26a)

p = T0L
2 v (um−umin)√

1 − v2
+

1

v

dp

dt
∆x(umin) , (3.26b)

where dE/dt = π1
t and dp/dt = −π1

x are the rates at which the external electric field trans-

fers energy and momentum to the quark. Note that the umin → uh limit of T0L
2(um−umin)

is just the static rest energy Mrest(T ).

The result (3.26) suggests that one might interpret Mrest(T )/
√

1 − v2 as the energy

(and v times this as the momentum) of a quark moving at velocity v through the plasma. Or

equivalently, that the appropriate thermal dispersion relation is just a relativistic dispersion

relation but with mass Mrest(T ). This, we believe, is too simplistic. A quark moving

through the thermal plasma is a quasiparticle — an elementary excitation of the system

with a finite thermal width given by the damping rate µ. The (free) energy of a quark

moving through the medium is only defined to within an uncertainty given by its thermal

width. A natural operational definition is to start with a static quark, at rest in the thermal

medium, turn on an electric field which accelerates the quark to the desired velocity in some

time τ , and then define the energy of the quark as its initial rest energy plus the work done

by the electric field while accelerating the quark. The acceleration time τ should be small

compared to the damping time µ−1, to avoid counting energy which has already been lost

to the medium. But τ should also be large compared to the inverse kinetic energy of the

quark, to minimize the quantum uncertainty in the energy. Satisfying both conditions

is only possible if the thermal width is small compared to the energy, which is the basic

condition defining a good quasiparticle. Choosing τ ∼ (µMv2)−1/2 (for non-relativistic

motion) balances the two uncertainties and gives a limiting precision with which one can

define the kinetic energy of a moving quark that scales as λ1/4 T/p. Finding the requisite

string solution with such a time-dependent electric field has not (yet) been done.

3.4 Quasinormal modes

Instead of considering a quark moving under the influence of an external electric field, we

now turn to the motion of a quark decelerating in the thermal medium, in the absence of

any external forcing. The setup here is the analog of the second gedanken experiment for

the toy model discussed in the Introduction. We will focus on the late-time, and hence low-

velocity, behavior. We extract this late-time dynamics by analyzing small perturbations

to the static string which describes a quark at rest. A key ingredient will be the purely

outgoing boundary conditions at the horizon which capture the dissipative nature of the

process and have been shown to reproduce appropriate thermal physics [51]. With these

boundary conditions, the problem becomes a quasinormal mode calculation on the string

worldsheet. To complement the linear analysis of this section, in section 4 we will also

perform a numerical analysis of the full, time-dependent problem.

The linearized equation of motion for small fluctuations around the static straight

string, x(u, t) = x0 means treating ẋ and x′ as small and retaining only terms linear in
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derivatives of x. From eq. (2.10) one sees that this corresponds to replacing −g/L4 with

1, which reduces the full string equation of motion (2.11) to17

∂

∂u

(

hu2x′) =
u2

h
ẍ . (3.27)

To select the physically relevant solution, we impose purely outgoing boundary condi-

tions at the horizon. These boundary conditions make the resulting boundary value prob-

lem non-hermitian and the resulting quasinormal modes will have real exponential time

dependence. Close to the horizon, the most general solution of the wave equation (3.27)

has the form

x(u, t) = F
(

t +
1

uhd
log(ε)

)

+ G
(

t − 1

uhd
log(ε)

)

. (3.28)

where ε ≡ u/uh − 1 [or u = (1 + ε)uh], and F (x) and G(x) are arbitrary (differentiable)

functions. Purely outgoing means that G = 0 in this regime.

Specializing to e−µt time dependence and introducing, for convenience, a dimensionless

radial coordinate y ≡ u/uh and dimensionless decay rate γ = µ/uh, the linearized wave

equation (3.27) becomes the eigenvalue equation

Lx = γ2 x , (3.29a)

with

L ≡ (1 − y−d)
d

dy
y4(1 − y−d)

d

dy
. (3.29b)

Imposing outgoing boundary conditions at the horizon and Neumann boundary conditions

at the flavor brane leads to a discrete spectrum of quasinormal mode decay rates.

Close to the horizon at y = 1, the purely outgoing solution to eq. (3.29) is propor-

tional to (y−1)−γ/d with γ positive. This diverges as y → 1, showing that there are non-

uniformities between the large time and near horizon limits. In particular, the assumption

that
√−g/L2 ≈ 1 is only valid at sufficiently late times, when t + (uhd)−1 log(y−1) is

sufficiently large. To evaluate the deviation of
√−g/L2 from unity, one needs the next-to-

leading term in the near horizon asymptotics. We find

x(y, t) = A(y−1)−γ/de−γuht
{

1 + γB(y−1) + O[(y−1)2]
}

with B = 3−d
2d + 2

d−2γ . This gives

−g

L4
= 1 − 4A2µ2

d−2γ
(y−1)−2γ/d e−2µt × [1 + O(y−1)] ,

which shows that, at any fixed position outside the horizon,
√−g/L2 ≈ 1 for sufficiently

large times.

The near horizon asymptotics are useful also for exploring the small mass limit ym → 1

of our quasinormal mode problem. It is possible for x(y, t) to obey Neumann boundary

17In d = 3 dimensions, this differential equation coincides with the massless scalar wave equation in the

AdS4 black hole background, at zero spatial momentum. In other dimensions, including the d = 4 case of

interest, the linearized string equation (3.27) differs from the scalar wave equation.
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conditions at y = ym, in the limit ym → 1, if γ = d
2 + O(ym−1). This enables the first

two terms in the asymptotic series expansion for x(y, t) to give comparable, and canceling,

contributions to the slope x′(ym, t). This result, γ → d
2 , gives the intercepts of the d = 4

and d = 2 curves shown below in figure 4. Converting from the dimensionless decay rate γ

back to µ yields the result, valid for all d, that µ = 2πT in the limit where the flavor brane

approaches the horizon.

Large mass limit. The differential equation (3.29) does not appear to have a simple

solution for arbitrary d. In the special case of d = 2, the differential equation can be solved

in terms of associated Legendre functions, as discussed in appendix B. For the d = 4 case

of interest, eq. (3.29) is a particular example of the Heun equation, a differential equation

with four regular singular points. Heun functions are difficult to work with, and other

values of d appear to be even more difficult to treat analytically.

In the absence of a simple analytic solution to eq. (3.29), we attempt a power series

solution in γ,

x(y) = x0(y) + γ x1(y) + γ2 x2(y) + · · · . (3.30)

We will focus on the large mass regime where the flavor brane position ym ≡ um/uh À 1,

and we will find an iterative solution where γ = O(1/ym). For the moment, the correlation

between γ and ym may be viewed as an assumption which will be verified a posteriori.

Requiring Lx = γ2 x implies that

Lx0 = 0 , Lx1 = 0 , and Lx2 = x0 . (3.31)

We want to satisfy Neumann boundary conditions at the flavor brane, x′(ym) = 0, together

with outgoing boundary conditions at the horizon. As seen above, this requires that x(y) ∼
A (y−1)−γ/d as y → 1, for some constant A, or equivalently

x′(y) ∼ −A
γ

d
(y−1)−1−γ/d = A

[

−γ

d

1

y−1
+

γ2

d2

ln(y−1)

y−1
+ O(γ3)

]

. (3.32)

The constant x0(y) = A is the only homogeneous solution which obeys Neumann boundary

conditions at the flavor brane at y = ym. To generate the O(γ) term in the near horizon

behavior (3.32), the first order correction x1(y) must equal the second homogeneous solu-

tion of Lx = 0. The derivative of this homogeneous solution (which will be sufficient for

our purposes) is

x′
1(y) = −A

yd−4

yd−1
. (3.33)

At the flavor brane, x′
1(ym) = −Ay−4

m + O(y−4−d
m ). This violates the Neumann boundary

conditions. However, if γ = O(1/ym), then this violation can, and will, be compensated

by the next order term. Moving on to x2(y) and solving Lx2 = x0 gives

x′
2(y) = A

yd−3

yd−1

[

1 − 2F1

(

1

d
, 1,

d + 1

d
; yd

)]

+ C
yd−4

yd−1
. (3.34)

As y → 1, the leading term in the hypergeometric function is

2F1

(

1

d
, 1,

d + 1

d
; yd

)

= −1

d
ln(y−1) + O(1) , (3.35)
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and so

x′
2(y) =

A

d2

1

y−1

[

ln(y−1) + O(1)
]

. (3.36)

The logarithmic term is precisely what is required to generate the O(γ2) term in the outgo-

ing boundary condition (3.32). The unwanted non-logarithmic (y−1)−1 term is eliminated

by an appropriate choice for the coefficient C of the homogeneous term in (3.34).

When evaluated at ym À 1, the hypergeometric function is negligible compared to 1,

2F1

(

1

d
, 1,

d + 1

d
; yd

m

)

= O(1/ym) , (3.37)

so that

x′
2(ym) = Ay−3

m + O(y−4
m ) . (3.38)

The Neumann boundary condition requires

0 = x′(ym) = γ x′
1(ym) + γ2 x′

2(ym) + · · · . (3.39)

Inserting the explicit forms (3.33) and (3.38), one sees that the leading γ/y4
m term from

x′
1(ym) will cancel the leading γ2/y3

m term from x′
2(ym) provided

γ =
1

ym
+ O

(

1/y2
m

)

. (3.40)

This value of γ2 is the smallest eigenvalue of L (for the given boundary conditions). All

other eigenvalues are O(1) as ym → ∞. Expressing the result (3.40) in terms of the original

variables, the lowest quasinormal mode decay rate is

µ =
u2

h

um
+ O(u3

h/u2
m) . (3.41)

The motion of the string endpoint in this quasinormal mode is a simple exponential,

x(um, t) − x0 ∝ Ae−µt , (3.42)

so the velocity of the string endpoint satisfies

v̇ = −µ v . (3.43)

Inserting the result (3.41) for µ and using the large mass limit of the relation (3.3) between

the brane position and quark mass, namely um = m/(T0L
2), converts this result to

dp

dt
= −(T0L

2 u2
h) v , (3.44)

with p = mv. This agrees perfectly with our earlier result (3.19b) at small v.
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Figure 4: Lowest quasinormal mode decay rate γ as a function of mass parameter ym, for d = 2

(green dashed line) and d = 4 (thick red solid line), together with the leading large mass analytic

form γ = 1

ym

(thin blue line)

Arbitrary mass. To find the lowest eigenvalue of the quasinormal mode operator L for

an arbitrary D7-brane location ym, it is necessary to resort to numerical analysis. A simple

shooting algorithm suffices. At a point close to the horizon, y = 1 + ε with ε ¿ 1, one sets

x(1+ε) = 1 and x′(1+ε) = −γ
d

1
ε . This enforces the outgoing boundary condition. Then, for

various values of γ, one integrates the differential equation (L− γ2)x = 0 out to the flavor

brane, and successively refines γ to locate the minimal value that satisfies the Neumann

boundary condition x′(ym) = 0.

In figure 4 we plot the resulting lowest quasinormal decay rate, as a function of the

flavor brane location ym, in dimensions d = 2 and 4. These numerical values are consistent

with our large mass result that γ = y−1
m +O(y−2

m ). In appendix B, we show that the d = 2

case is analytically soluble, and the resulting frequencies satisfy the equation

ym =
1

γ
− γ

2
+ O(γ2) . (3.45)

When we compare the actual shape x(u, t) of the QNM with the analytic stationary

solution, we find that they agree when γ ¿ 1 (that is for large mass), which is when the

external field needed to maintain the velocity is small.

Low velocity dispersion relation. In addition to extracting the lowest quasinormal

mode decay rate, the linearized equation of motion (3.27) may also be used to find the

dispersion relation of a quark moving at low velocity. If ẋ and x′ are small, so that
√

−g/L4 ≈ 1, then the momentum density π0
x = T0L

2 u2 h−1 ẋ. For a quasinormal mode

with exponential time dependence, x(u, t) = x(u) e−µt, the momentum density may be

rewritten as

π0
x = −T0L

2

µ
u2 h−1 ẍ = −T0L

2

µ
(hu2x′)′ , (3.46)

where the last form follows from the linearized equation of motion (3.27). This current is

easily integrated to find the total momentum carried by the portion of the string running
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from the flavor brane down to an IR cutoff umin > uh,

p =

∫ um

umin

du π0
x =

T0L
2

µ
hu2x′

∣

∣

∣

u=um

u=umin

. (3.47)

Because of the Neumann boundary conditions, the upper endpoint does not contribute.

Hence

p =
T0L

2

µ
h(umin)u2

min x′(umin) . (3.48)

The energy may be evaluated similarly. We are interested in the deviation of the

energy from the static rest energy, and it is therefore necessary to keep all terms up to

quadratic order in ẋ and x′ in the energy density π0
t . Suitably expanding

√

−g/L4, the

energy density is

π0
t = −T0L

2
[

1 +
1

2
hu2(x′)2 +

1

2
µ2 h−1u2x2 + O(x4)

]

. (3.49)

Using the linearized equation of motion (3.27), one may express the resulting energy solely

as endpoint contributions,

E = −
∫ um

umin

du π0
t = T0L

2
[

(um − umin) −
1

2
h(umin)u2

min x(umin)x′(umin)
]

, (3.50)

where Neumann boundary conditions have again caused the non-static boundary term at

um to vanish.

Taking umin to be close to the horizon uh, and inserting the outgoing near-horizon

behavior

x(u) ∼ A(u − uh)−µ/duh e−µt . (3.51)

into expressions (3.48) and (3.50), yields a simple relation between the energy and momen-

tum,

E = T0L
2(um−umin) +

p2

2Mkin
, (3.52)

where the “kinetic mass”

Mkin ≡ T0L
2 u2

h

µ
=

π
√

λT 2

2µ
=

πT

µ
∆m(T ) . (3.53)

This kinetic mass is independent of the IR cutoff umin, while the umin → uh limit of the

first term of the energy (3.52) is just the thermal rest energy Mrest = T0L
2(um−uh).

In the heavy mass limit, the decay rate µ approaches u2
h/um = πT ∆m(T )/m [see

eqs. (3.41) and (3.3)]. Therefore, in this limit the ratio of the kinetic mass Mkin (or the

thermal rest mass Mrest) to the Lagrangian mass m approaches one. For smaller um,

corresponding to order one values of m/∆m(T ), there is a more complicated relationship

between the kinetic mass and the Lagrangian mass. The kinetic mass Mkin is plotted as a

function of m in figure 1.

Finally, note that the e−µt time dependence of the lowest quasinormal mode plus the

value (3.53) for the kinetic mass are equivalent to viscous drag,

dp

dt
= −µ p , (3.54)
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with a friction coefficient

µ =
π

2

√
λT 2

Mkin
= πT

∆m(T )

Mkin
, (3.55)

which for M = Mkin is completely consistent with the value (3.23) of µM extracted from

the analytic stationary solution.

4. Quark-antiquark solutions

Thus far, we have deduced µM (or the viscous drag as a function of velocity) from the sta-

tionary analytic solution, whose analysis was valid for all velocities. And we have deduced

the value of the friction coefficient µ itself from the linearized, quasinormal mode analysis,

valid for late times and hence small velocities. Both approaches reveal IR sensitivity of

the total string energy and momentum, which we argue should be viewed as reflecting an

unavoidable level of arbitrariness in defining the partitioning of the total system energy

(or momentum) into a piece associated with the moving quark plus a remainder associated

with the long disturbance in the medium.

A more physical approach for dealing with this IR sensitivity is to change the question.

Instead of considering a single quark moving through the plasma, one may study qq̄ pair

creation — that is, the dynamics of a quark-antiquark pair where the quark and antiquark

are initially flying apart from each other. Such a pair corresponds to a string with both

endpoints on the D7-brane. The previous IR sensitivity due to string dynamics arbitrarily

close to the horizon will be cut-off by the finite quark-antiquark separation, which will limit

how far down toward the horizon the middle of the string can “sag”.

For simplicity, we will limit our attention to the case of back-to-back motion, so the

total momentum will vanish and the entire string worldsheet will lie within the three-

dimensional (t, u, x) slice of the AdS-black hole geometry. Hence, we need to find non-

stationary solutions of the partial differential equation (2.11) with physically relevant initial

conditions. To do so, we need time dependent numerics.

To set up the numerical problem, it is convenient to remap the infinite range of the

radial coordinate u ∈ (uh,∞) onto a finite interval. To do so, we define

z =
1

y
=

uh

u
. (4.1)

We will specialize to d = 4 and choose units where uh = 1, so the line element of the black

D3-brane gravitational background becomes

ds2 =
L2

z2

(

−f(z) dt2 + d~x2 +
dz2

f(z)

)

, (4.2)

where f(z) ≡ 1 − z4 and ~x = (x1, x2, x3). Temperature dependence may be restored later

by rescaling the coordinates: t → uh t, xi → uh xi. In this coordinate system, the black

hole horizon is located at z = 1 and the AdS boundary at z = 0. Our open string will end

on a D7-brane which fills the five dimensional space from z = 0 to z = zm. We will assume

that both string endpoints are located at z = zm, and that the string extends only in the

z and x = x1 directions.

– 24 –



J
H
E
P
0
7
(
2
0
0
6
)
0
1
3

Changing variables from u to z in the 1+1 dimensional partial differential equa-

tion (2.11), and then discretizing on a rectangular grid18 in z and t turns out to be a

bad approach. Numerical stability rapidly degrades as the string endpoints separate and

the middle of the string gets closer to the horizon. The net result is that the numerical

integration breaks down after a very limited amount of time.

We have found that a much better starting point for numerical integration is the

Polyakov action with a worldsheet metric that is a generalization of conformal gauge.

Recall that the Polyakov action for the string takes the form

SP = −T0L
2

2

∫

dσ dτ ηαβGµν ∂αXµ ∂βXν √−η . (4.3)

Here X(σ, τ) is a map from the string world-sheet into space-time, ηαβ is the world-sheet

metric, Gµν is the space-time metric, T0 is the string tension, and
√−η is minus the square

root of the determinant of ηαβ. We take 0 ≤ σ ≤ π.

From the action SP, one derives the usual equations of motion for the string,

1

2
ηαβ ∂Gνρ

∂Xµ
∂αXν ∂βXρ √−η = ∂τ

[

Gµν
√−η

(

ηττ Ẋν + ητσX ′ν
)]

+ ∂σ

[

Gµν
√−η

(

ητσẊν + ησσX ′ν
)]

, (4.4)

along with a constraint on the world-sheet metric,

Gµν ∂αXµ ∂βXν =
1

2
ηαβ ηγδ Gµν ∂γXµ ∂δX

ν , (4.5)

produced by the variation of SP with respect to ηαβ . The world-sheet metric ηαβ may be

integrated out (classically), converting the Polyakov action into the original Nambu-Goto

action.

A standard choice of world-sheet metric is “conformal gauge”, in which one chooses

the metric to differ from a flat metric just by an overall conformal factor which is a function

of σ and τ ,

‖ηαβ‖ =

(

−1 0

0 1

)

eω(σ,τ) . (4.6)

Through trial and error, we have found that this choice also introduces problems for the

numerical integration. The portion of the world-sheet close to the horizon evolves to late

times far faster than the portion of the world-sheet closer to the boundary, introducing large

gradients for the embedding X(σ, τ). A simple generalization of conformal gauge eliminates

this problem and introduces an extra degree of freedom which may be tweaked to optimize

the performance of the numerical integrator. Specifically, we choose a world-sheet metric

of the form

‖ηαβ‖ =

(

−s(σ, τ) 0

0 s(σ, τ)−1

)

eω(σ,τ) . (4.7)

18As is done internally in canned PDE solvers such as Mathematica’s NDSolve.
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We will refer to s as the stretching factor. With this choice of metric and an arbitrary

stretching factor, the equations of motion become

∂τ

(

f ṫ

sz2

)

− ∂σ

(

sft′

z2

)

= 0 , (4.8a)

∂τ

(

ẋ

sz2

)

− ∂σ

(

sx′

z2

)

= 0 , (4.8b)

∂τ

(

ż

sfz2

)

− ∂σ

(

sz′

fz2

)

= − 1

2s

[

(

ṫ2 − s2t′2
)

∂z

(

f

z2

)

−
(

ż2 − s2z′2
)

∂z

(

1

fz2

)

−
(

ẋ2 − s2x′2) ∂z

(

1

z2

)]

. (4.8c)

and the constraints, written explicitly, are

0 = −f ṫt′ + ẋx′ + f−1 żz′ , (4.9a)

0 = −f
(

ṫ 2 + s2 t′2
)

+
(

ẋ2 + s2x′2) + f−1
(

ż2 + s2 z′2
)

. (4.9b)

Here (and below), ẋ ≡ ∂τ x and x′ ≡ ∂σ x, etc.

The next step in setting up the numerical integration is to find good initial conditions,

a task which is made harder by the constraint equations. We have found two consistent

sets of useful initial conditions, both inspired by the classical limit of the leading Regge

trajectory of the string quantized in flat space. Recall that the leading Regge trajectory

for an open string in flat space with pure Neumann boundary conditions has a classical

limit,

t = Aτ , x = A cos σ sin τ , z = A cos σ cos τ , (4.10)

which corresponds to a line segment of length A spinning in a circle in the xz-plane. Once

we introduce a D7-brane along z = z0, there is a closely related classical string state with

mixed Neumann-Dirichlet boundary conditions which serves as our inspiration for initial

conditions,

t = Aτ , x = A cos σ sin τ , z = z0 + A sin σ sin τ . (4.11)

This describes a semi-circle expanding and contracting in the xz-plane.

Our first set of initial conditions for the AdS-black brane geometry can be thought of

as the τ = 0 limit of the semi-circle solution with some scaling factors that compensate for

the fact that we are no longer in flat space,

t(σ, 0) = 0 , ṫ(σ, 0) = A [1−z4
m]−1/2 , (4.12a)

x(σ, 0) = 0 , ẋ(σ, 0) = A cos σ , (4.12b)

z(σ, 0) = zm , ż(σ, 0) = A [1−z4
m]1/2 sin σ . (4.12c)

We will call these boundary conditions “point-like”; at time t = 0, the string is mapped

onto a single point in space-time. The parameter zm, which controls the AdS radius of

the string endpoints, is determined by the quark mass, zm ≡ uh/um. Notice that the
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initial speed of the ends of the string (given by ẋ/ṫ) is constrained to be
√

1 − z4
m, so the

initial speed is an increasing function of quark mass. The “amplitude” A controls how

much energy is contained in the initial (zero length) string. [The explicit relation is given

below in eq. (4.16).] Physically, these initial conditions should resemble the effect of a local

current which produces a quark-antiquark pair when acting on the thermal equilibrium

state, with the quarks having sufficient energy so that their dynamics may be regarded as

classical.

Our second set of initial conditions is an expanding semi-circle characterized by an

adjustable speed v. We take

t(σ, 0) = 0 , (4.13a)

x(σ, 0) = A cos σ , (4.13b)

z(σ, 0) = zm + A sin σ , (4.13c)

ẋ(σ, 0) = v cos σ ṫ(σ, 0) . (4.13d)

The constraint equations then force

ż(σ, 0) = v f sin σ ṫ(σ, 0) , (4.13e)

and

ṫ(σ, 0) =
As

[

sin2 σ + f−1 cos2 σ
]1/2

[

f − v2(cos2 σ + f sin2 σ)
]1/2

, (4.13f)

with f evaluated at z(σ, 0). For these initial conditions to result in a real valued X(σ, τ),

the inequality

v2(cos2 σ + f sin2 σ) < f (4.14)

must be satisfied for all σ. This macroscopic “semi-circle” initial configuration does not

correspond to the action of any local operator, but the finite size of the string allows more

freedom in choosing the initial speed v of the quarks.

We used the NDSolve routine in Mathematica for numerical integration [52]. See

appendix C for a discussion of numerical error.

4.1 Forced motion

We would like to confirm that the analytic solution presented in section 3.3 is physically

relevant. One might worry because of the IR divergence in the string energy. Therefore,

we will investigate a quark-antiquark pair in the presence of a constant electric field, which

will naturally drive the quark and antiquark in opposite directions.

A straightforward numerical integration of the equations of motion (4.8) cannot handle

sending the flavor brane all the way to zm = 0 (or the quark mass to infinity) due to the

divergence of 1/f at the boundary. So we will choose positive values of zm and use either

the point-like initial conditions (4.12) or the semi-circle initial conditions (4.13) to create

a separating quark-antiquark pair at time t = 0. Instead of the usual Neumann boundary

conditions at z = zm, we simply fix the endpoint velocity, ẋ/ṫ = v at σ = 0 and −v and

σ = π. This corresponds to a time-dependent electric field which is asymptotically constant,

and whose strength is adjusted precisely to cancel the viscous drag on the quarks at all
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Figure 5: Cross sections of the string world sheet at times (a) t = 0.25, (b) t = 0.5, (c) t = 1.1

and (d) t = 1.8 (in units where uh = πT = 1), for point-like initial conditions, constant velocity

boundary conditions, and a D7-brane at zm = 0.75. The velocity v/c = 0.83 and the value of zm

corresponds to m/∆m(T ) = 1.28. The red dashed line shows the constant velocity analytic single

quark solution.

times. As noted above, the speed v must equal
√

1 − z4
m for point-like initial conditions, or

satisfy condition (4.14) for semi-circle initial conditions. In either case, we find numerical

solutions which nicely match onto two copies of the analytic solution (3.17) at late times.

As the ends of the string separate, the middle of the string droops toward the horizon and

the time dependence approaches the stationary form (3.7).

In figure 5, we plot numeric results for point-like initial conditions with a D7-brane at

zm = 0.75 and A = 0.25. This value of zm corresponds to a mass ratio m/∆m(T ) = 1.28

and a speed v/c = 0.83. As time goes by, the expanding string, plotted in black, matches

onto the analytic solution, plotted in red, more and more closely. By t = 1.8, the two are

practically indistinguishable for x > 0.

Through experimentation, we found that a stretching function of

s =
1−z

1 − 3.5 z(1−z)
(4.15)

works particularly well for this string. The 1−z factor in the numerator prevents the string

worldsheet from being dragged to late times close to the horizon. The denominator amelio-

rates some distortion of the constant σ and τ contours of the worldsheet for intermediate

values of z.

4.2 Unforced motion

In this subsection we consider the motion of a quark-antiquark pair created with point-like
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Figure 6: String endpoint as a function of time for an oscillatory solution with zm = 0.50,

E/Mrest = 1.2, and pointlike initial conditions. To observe many oscillations, this integration

tolerated a larger numerical error (10−3 instead of 10−4 typical of the other plots in this section).

The time dependent damping is comparable to the numerical error.

initial conditions (4.12) in the absence of any external forcing. That is, we impose the

usual Neumann boundary conditions along the D7-brane. A short calculation shows that

the energy [given by eq. (2.14)] of our point-like initial configuration is19

E = T0L
2

√

1 − z4
m

s(zm)

Aπ

z2
m

. (4.16)

The subsequent motion is sensitive to the value of this initial energy of the qq̄ pair. The

static potential between a heavy quark and antiquark in N = 4 SYM rises linearly at short

distance before switching to a Coulombic form at a cross-over distance set by the inverse

quark mass [40]. At non-zero temperature, the potential remains approximately Coulombic

until a distance of order the inverse temperature, where (at Nc = ∞) there is an abrupt

transition to to a constant limiting value [which is twice the static thermal rest energy

Mrest(T )] [47, 48].20 If the energy of the qq̄ pair is sufficiently low, then the attractive force

between the separating quarks will be strong enough to cause their trajectories to turn

around, and the resulting motion will resemble an oscillator. If the energy is sufficiently

high, then the quark trajectories will not have turning points and the motion will resemble

a highly overdamped oscillator.

For our point-like initial conditions, the exact energy threshold for non-oscillatory mo-

tion need not equal 2Mrest(T ) precisely, because of the possibility of exciting internal string

degrees of freedom. Numerically, however, there does indeed appear to be a divergence in

the period at E & 2Mrest(T ) for these point-like initial conditions.

Numerically we do find oscillating solutions similar to the flat space expanding and

contracting semi-circle (4.11) when E is well below 2Mrest(T ). An example is illustrated in

figure 6. As E approaches 2Mrest(T ) from below, the period of oscillation becomes longer

and longer.

19The current π0

t can be obtained from a limit of (2.12a), or more directly from the Polyakov action. One

finds π0

t = −T0L
2 ηττ√−η Gtt ṫ .

20This corresponds to a change in the lowest energy string configuration from one in which a string

connects the two quarks, to one in which a string runs straight down from each quark to the horizon.
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Figure 7: Plots of the position of the endpoint of the string versus time for several different D7-

brane positions zm. The string endpoint is plotted in black while the best-fit curve, as described in

the text, is a green dashed line. The two curves are nearly identical. Parameters for the different

solutions are: (a) zm = 0.75, E/Mrest = 14, (b) zm = 0.50, E/Mrest = 6.1, (c) zm = 0.25,

E/Mrest = 4.4, and (d) zm = 0.25, E/Mrest = 5.9. Units where uh ≡ πT = 1 are used.

To extract information about the viscous damping of a single quark, we want to create

a quark-antiquark pair with an energy greatly exceeding the binding energy,

E À 2Mrest(T ) , (4.17)

so as to minimize the interaction between the quark and antiquark. Numerical solutions sat-

isfying this large energy condition do show the expected non-oscillatory behavior. Several

examples are shown in figure 7. Solutions (a) and (b) used a stretching factor s = (1−z),

amplitude A = 0.25, and flavor brane positions zm = 0.75 and 0.5 respectively. The masses

and energies were m/∆m(T ) = 1.28, Mrest(T )/m = 0.26, and E/Mrest(T ) = 14 for (a) and

m/∆m(T ) = 1.98, Mrest(T )/m = 0.51, and E/Mrest(T ) = 6.1 for (b). For (c), a stretching

factor s = (1−z)3/2, amplitude A = 0.17, and flavor brane position zm = 0.25 were used.

For this run, m/∆m(T ) = 4.0, Mrest(T )/m = 0.75, and E/Mrest(T ) = 4.4. In the last run

(d), a stretching factor of s = (1−z)2, an amplitude A = 0.20, and a flavor brane position

of zm = 0.25 were used, corresponding to E/Mrest(T ) = 5.9. Numerical error limits how

far we are able to integrate in time. For initial conditions corresponding to lighter or less

energetic quarks, one sees a large decrease in velocity and a clear approach to an asymptot-

ically constant position. But for higher energies or more massive quarks (which experience

less damping) numerical error prevents us from following the quark to the non-relativistic

regime.

Given a quark-antiquark pair with large energy, we model each quark independently
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as a particle experiencing a damping force

dp

dt
= −µ p . (4.18)

If momentum is proportional to velocity, as with non-relativistic motion, then this equation

integrates to

v(t) = v0 e−µt , x(t) = x∞ − v0

µ
e−µt . (4.19)

But if the relation between velocity and momentum has a relativistic form, p ∝ v/
√

1 − v2,

then equation (4.18) is equivalent to

dv

dt
= −µ v (1 − v2) , (4.20)

which integrates to

v(t) = v0

/

√

v2
0 + (1 − v2

0) e2µt , (4.21a)

and

x(t) = x∞ − 1

2µ
ln

[

1 + v(t)

1 − v(t)

]

. (4.21b)

To test the validity of this description and extract information on the damping rate µ

we fit the numerical results for the position of the string endpoint to eq. (4.21), treating

µ, ln(1 − v2
0) and x∞ as free parameters.21 As shown in figure 7, when the large energy

condition (4.17) holds the resulting fit, using the form (4.21), is quite good for all τ ,

although we do see some minor deviations at small τ . In contrast, fits of these large energy

solutions to the simple exponential form (4.19) are somewhat worse.

The fact that fits using eq. (4.21) are so good supports the presumed relativistic relation

between p and v together with a friction coefficient µ that is independent of p. We are

following the evolution of the quark over typically a rather large momentum range as can

be seen from figure 7. The results for the extracted values of µ are nearly independent

of the energy so long as E > 2Mrest(T ). Changing the energy by 50% or more typically

only results in a few percent change in the value of µ. For example, for a D7-brane at

zm = 0.5, as we increase E/Mrest from 4.8 to 7.2, µ changes from 0.79 to 0.80. For the case

zm = 0.25, changing E/Mrest from 4.4 to 5.9 changes µ from 0.325 to 0.326.

Table 2 compares the values of µ from the quasinormal mode calculation of section 3.4

to the best fits of our numerical integrations. The numbers are astonishingly close, giving

us confidence in the linear analysis. The results begin to differ by a few percent for large

mass quarks. It is not a-priori clear what causes this discrepancy. The extraction of

the energy loss rate may be affected by the interaction with the other quark, but that

should produce a correction of the opposite sign. There may be small thermal corrections

to the relation between momentum and velocity, or residual momentum dependence in

21Given a numerical integration up to a worldsheet time τmax, we fit the endpoint of the string to the

assumed form for x(t) only for τmax/2 < τ < τmax, choosing ten equally spaced points in this region. We

limit the data used in the fit to the latter half of the available time interval in order to minimize the effects

of the interaction between the quarks, which is largest when the quarks are close together.

– 31 –



J
H
E
P
0
7
(
2
0
0
6
)
0
1
3

µ/πTm

∆m(T )
zm numeric QNM

5.00 0.20 0.250 0.25

4.00 0.25 0.325 0.32

3.12 0.32 0.44 0.44

2.49 0.4 0.59 0.59

1.98 0.5 0.80 0.80

1.64 0.6 1.02 1.04

1.28 0.75 1.40 1.42

Table 2: The friction coefficient µ for various values of quark mass m. The quasinormal mode

(QNM) results were calculated using the linear analysis of section 3.4, while the numeric results

come from the full time dependent numerics discussed in this section.

the damping rate. Conceivably, there could be nonlinear effects that are absent in the

quasinormal mode analysis but which reappear in this full dynamical simulation and are

relevant even at (accessibly) late times. Or this small discrepancy may reflect residual

errors in our numerical integration.

5. Discussion

Let us close with a discussion of the validity of our approximations. The classical treatment

of the string is justified as long as the string is much longer than a string length; quantum

fluctuations will be suppressed by powers of `s/R where R denotes the characteristic length

of the string. All the single quark solutions we considered had strings with length of order L,

the AdS curvature radius, or larger. As one lowers the quark mass toward the critical value

mc ≈ 0.92∆m(T ), the D7-brane approaches but does not quite reach the horizon. The

shortest string one can get (with m ≥ mc) has a length of about 0.02L. Since L = λ
1

4 `s, we

see that for sufficiently large λ, quantum fluctuations of the string are always suppressed.

Hence, a classical treatment of the string dynamics is valid for sufficiently large λ as long

as the quark mass exceeds the critical value mc.

For applications to QCD, however, one may be interested in large but not asymptoti-

cally huge values of the ’t Hooft coupling, perhaps λ ≈ 20 (corresponding to αs ≈ 0.5). In

this regime, the condition R À `s can become non-trivial and for masses near the critical

value mc (which is about 2.2 T for λ ≈ 20) quantum fluctuations of the string will be

important.

Another phenomenon that has not appeared in our discussion up to now is Brownian

motion. Any dissipative thermal system must also have fluctuations, as shown by the

fluctuation-dissipation theorem. In particular, a quark (of finite mass) initially at rest in

the plasma should not be able to remain at rest. It will undergo Brownian motion and

diffuse away from its starting point. Over a time t it will travel a distance ∆x ∼
√

Dt.
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The diffusion constant D is directly related to the viscous drag,

D =
T

µM
. (5.1)

This physics is missing in our classical treatment of string dynamics. A motionless string

stretching from the D7-brane to the horizon is a solution to the equations of motion, and

there is no obvious reason for the string endpoint to move at all. This straight motionless

string clearly represents a quark at rest in the plasma.

The reason we do not see Brownian motion is due to the non-uniform nature of the

large λ and large time limits. For a quark initially moving with some O(1) velocity v,

stochastic Brownian motion will be unimportant until sufficiently late times. To see this

explicitly, one can use the Langevin equation

~̇p = −µ ~p + ~ξ(t) (5.2)

to model the behavior of the quark. Here ~ξ(t) is stochastic white noise, with

〈ξi(t)ξj(t
′)〉 = C δij δ(t−t′). (5.3)

Calculating the mean square momentum at time t gives

〈pi(t)pj(t)〉 = 〈pi(t)〉〈pj(t)〉 +
C

2µ
δij (1 − e−2µt) . (5.4)

with 〈~p(t)〉 = ~p(0) e−µt. At equilibrium, by equipartition, the kinetic energy p2/(2Mkin) of

the quark must be 3
2T . (Note that the condition m ≥ mc automatically implies that Mkin À

T , so a non-relativistic form of kinetic energy is appropriate for quarks in equilibrium.)

Requiring that the large t limit of 〈~p(t)2〉 equal 3TMkin shows that the strength of the

noise is determined by the viscous drag,

C = 2TµMkin(T ) = 2πT 2∆m(T ) = π
√

λT 3 . (5.5)

Integrating the Langevin equation (5.2) again to find the quark’s position, assuming non-

relativistic motion and vanishing initial velocity, and computing the mean square displace-

ment gives

〈∆xi(t)∆xj(t)〉 =
C t

(µMkin)2
δij

[

1 + O
(

1/(µt)
)]

. (5.6)

This must equal the classic result 〈∆xi(t)∆xj(t)〉 = 2D t δij for the variance of the prob-

ability distribution P (∆~x, t) = (4πDt)−3/2 e−∆~x2/(4Dt) generated by a diffusion equation

with diffusion constant D. Combining eqs. (5.5) and (5.6) gives the stated value (5.1) for

the diffusion constant.

For diffusive effects to be negligible, we require the second term of (5.4) to be small

compared to the first term, giving an upper bound on the time over which a deterministic

treatment of quark motion is valid,

t < tB ≡ 1

2µ
ln

(

1 +
2K.E.

3T

)

, (5.7)
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where K.E. = 1
2Mkin v2

0 is the kinetic energy of the quark at time zero. At the same time,

for eq. (5.2) to adequately model the energy loss of the quark, quantum uncertainty in

its kinetic energy must be negligible compared to the change in the kinetic energy which

we wish to resolve. This imposes a lower limit on the time during which our classical

description is valid, namely 1/t ¿ µt (K.E.), or

t À tQ ≡ [µ × (K.E.)]−1/2 . (5.8)

Our analysis requires that tQ ¿ t ¿ tB. Using µ ∼ ∆m(T )T/Mkin, this condition

may be rewritten as
√

∆m

Mkin
¿

√

K.E.

T
ln

(

1 +
2K.E.

3T

)

. (5.9)

This inequality is most stringent for the lightest (accessible) quarks with m near mc and

Mkin ≈ 1
2∆m(T ). Hence the required large separation between the quantum and diffusive

time scales is valid as long as the initial kinetic energy of the quark is large compared to

the temperature,

K.E. ≡ 1

2
Mkin v2

0 À T . (5.10)

For a quark mass near the critical limit mc, this is equivalent to the requirement that the

initial velocity satisfy

v0 À λ−1/4 . (5.11)

A point to be emphasized is that the classical treatment of quark dynamics underlying all

results in table 2 is valid provided λ is sufficiently large.

The result (5.4) for momentum fluctuations also allows one to relate the rate of change

of the mean square transverse momentum to the noise, and hence to the viscous drag,

d

dt

〈

~p⊥(t)2
〉

∣

∣

∣

t=0
= 2C = 4TµMkin(T ) = 2π

√
λ T 3 . (5.12)

This characterizes the diffusion in transverse momentum of a quark propagating through

the plasma. However, the simple connection (5.12) between transverse momentum diffu-

sion and viscous drag relies on the validity of the Langevin equation (5.2) with isotropic

white noise (5.3) for modeling the stochastic force fluctuations acting on the quark. If

the stochastic force fluctuations have significant momentum dependence, or non-Gaussian

correlations, then this simple description will not be adequate. One can argue that the

simple Langevin description is valid for non-relativistic motion, v ¿ 1. Whether it re-

mains valid for arbitrary momentum is not completely clear. At weak coupling, both the

viscous drag and the noise variance acquire significant velocity dependence for O(1) values

of rapidity [11]. Since we find no velocity dependence in the friction coefficient µ at strong

coupling, it seems plausible that there will also be negligible velocity dependence in the

variance of the force fluctuations, even for relativistic motion. However, this has not been

directly verified.

– 34 –



J
H
E
P
0
7
(
2
0
0
6
)
0
1
3

Note added. Several related papers have very recently appeared which overlap with

portions of our analysis [53 – 55]. The quark diffusion constant found in ref. [54] agrees

with our value (1.12). The result of ref. [53] for the jet quenching parameter q̂ does not

agree with our result (1.13). However, these authors are addressing a different physical

question involving radiative energy loss of a lightlike projectile. Interestingly, their result

has the same parametric dependence as our result (5.12), but with a coefficient which is

15% smaller.
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A. Other solutions

In this appendix we briefly discuss other stationary string solutions in the AdS5-black hole

background. As we showed in section 3.3, the ansatz x(u, t) = x(u) + vt reduces the string

equation of motion to the ordinary differential equation (3.8) with a first integral (3.11).

The numerator in the expression (3.11) vanishes at uc = (1 − v2)−1/duh, while (for d = 4)

the denominator vanishes at u0 = (u4
h + C2v2)1/4. The previously discussed single quark

solution requires uc = u0, so that x′ is non-vanishing and non-singular everywhere between

the horizon and the boundary. But if these two radii do not coincide, one can still find

solutions with −g everywhere positive on the worldsheet. If u0 > uc, then the physical

solution lives entirely in the u > u0 part of space, depicted on the left in figure 8. This

configuration corresponds to an infinitely heavy external quark/antiquark pair at finite

temperature, moving at a common velocity v. For a static quark/antiquark pair, it was

found in ref. [47, 48] that the solution only exists for a bounded range of quark/antiquark

separations l. At zero velocity the largest separation lmax is achieved when u0 approaches

uh. At non-zero velocity, this solution ceases to exist beyond u0 = uc.

Alternatively, if u0 < uc then the solution lives entirely in the region between u0 and

the horizon, as depicted on the right in figure 8. One might think that this string solution

could represent some coherent gluonic excitation. But since the momentum is outgoing on

one end of the string, and ingoing on the other, we believe this solution is unphysical.

Finally, yet another very simple solution is a straight string, x = vt, moving at constant

velocity. We argued in section 3 that such a string, stretching from um down to the horizon

and moving at any non-zero velocity, is not physical. However, if one considers a theory

with two flavors of quarks with different masses, so that the gravitational description has

two D7-branes at differing radial positions um1
and um2

, then one can regard the portion of

this trivial solution lying between um1
and um2

as describing a moving light-heavy meson.

Figure 9 depicts this configuration. The solution is physical provided um1
and um2

are both

greater than uc. This condition shows that, for given quark masses, there is a maximum

velocity with which such a color-singlet meson can move through the medium without
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u0

uc

uc
u0

v

v

Figure 8: Left: Semiclassical solutions corresponding to a quark/antiquark pair with a fixed spatial

separation moving through the finite temperature medium at constant speed. Right: A stationary

solution in which the string moves at constant velocity outside the horizon. One end of the string

satisfies physical (outgoing) boundary conditions at the horizon, but the other end does not. Hence,

this solution is unphysical.

uh

v

u

um

m2

1

uc

Figure 9: A straight, moving string solution corresponding to a light-heavy meson (in a multi-flavor

theory) moving through the thermal medium at constant velocity.

experiencing any drag (at leading order in 1/Nc and λ → ∞),

v2 < 1 − (uh/um<)d , (A.1)

where um< is the lesser of um1
and um2

.

B. Quasinormal modes in d = 2

In d = 2, the metric function h(u) = u2 − u2
h and the resulting linear equation (3.27) can

be solved analytically. The most general solution is

x(y, t) = e−µtf(y) = e−µt (cP P γ
1 (y)/y + cQ Qγ

1(y)/y) , (B.1)

where we have introduced the dimensionless quantities γ = µ/uh and y = u/uh, and P γ
1

and Qγ
1 are associated Legendre functions. (We follow the conventions in Gradshteyn and

Ryzhik [56].) The horizon is at y = 1, and the boundary is out at y → ∞. In order to

study the behavior of P γ
1 and Qγ

1 at large y, and for y close to 1, it is convenient to use
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the relation to hypergeometric functions. The associated Legendre functions P γ
1 and Qγ

1

are uniquely defined for 1 < y < 2 and y > 1, respectively, as

P γ
1 (y) =

1

Γ(1−γ)

(

y + 1

y − 1

)γ/2

2F1

(

−1, 2, 1−γ;
1

2
−y

2

)

, (B.2)

Qγ
1(y) =

1

3
eiγπ Γ(2+γ)

(

1 − y−2
)γ/2

y−2
2F1

(

γ

2
+

3

2
,
γ

2
+ 1,

5

2
; y−2

)

. (B.3)

These expressions may be used to evaluate P γ
1 (y) for y close to 1 and Qγ

1(y) at large y. To

evaluate P γ
1 (y) at large y and Qγ

1(y) close to 1 one can use hypergeometric identities to

find (see also ref. [56]):

P γ
1 (y) =

1

3Γ(−1−γ)

(

1 − y−2
)γ/2

y−2
2F1

(

γ

2
+

3

2
,
γ

2
+

1

2
,
5

2
; y−2

)

+
1

Γ(2−γ)

(

1 − y−2
)γ/2

y 2F1

(

γ

2
,
γ

2
−1

2
,−1

2
; y−2

)

, (B.4)

Qγ
1(y) =

1

2
eiγπ

[

Γ(γ)

(

y + 1

y − 1

)γ/2

2F1

(

−1, 2, 1−γ;
1

2
−y

2

)

+
Γ(−γ)Γ(2+γ)

Γ(2−γ)

(

y − 1

y + 1

)γ/2

2F1

(

−1, 2, 1+γ;
1

2
−y

2

)]

. (B.5)

Close to the horizon we find that Qγ
1 is a linear combination of a solution that goes as

(y−1)γ/2 and one that goes as (y−1)−γ/2. According to eq. (3.28), when combined with

e−µt time dependence the former is in-going while the latter is outgoing. On the other

hand, P γ
1 only has a (y−1)−γ/2 term and hence is the purely outgoing solution. So to find

quasinormal modes we can focus on the P γ
1 solution only,22 and set cQ = 0.

Imposing Neumann boundary conditions at a flavor brane, the quasinormal modes are

given by solutions to

f ′(y)
∣

∣

y=ym
= ∂y(P

γ
1 (y)/y)

∣

∣

y=ym
= 0. (B.6)

For large ym we can expand the hypergeometric functions to obtain

f(y) =
1

Γ(2−γ)

[

1 − 1

2
γ2y−2 + O

(

γ4y−4
)

]

+
y−3

3Γ(−1−γ)

[

1 +
1

10
(3 + 9γ + γ2) y−2 + O

(

y−4
)

]

. (B.7)

Assuming that γ ∼ 1/ym, we have kept all terms up to order y−7
m . This assumption will be

justified presently. From this asymptotic expansion, it follows that

f ′(ym) =
y−3

m

Γ(−1−γ)

[

γ

1−γ2

(

1 +
1

2
y−2

m

)

− y−1
m −

(

1

2
+

3γ

2

)

y−3
m + O

(

y−5
m

)

]

. (B.8)

22To check the results we also looked at eµt time dependence instead of e−µt. In that case (y−1)γ/2 is

the physical near horizon behavior. This implies a particular linear combination of P γ
1

and Qγ
1
. The final

answer turns out to be the same.
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Figure 10: Quasinormal mode wavefunction f(y) for a mass corresponding to ym = 10.

Solving f ′(ym) = 0 for ym yields the asymptotic expression ym = 1
γ −

γ
2 +O(γ2), which jus-

tifies a posteriori our assumption about the scaling behavior of γ. Inverting this expression

for γ yields

γ =
1

ym
− 1

2 y3
m

+ O
(

y−4
m

)

. (B.9)

The corresponding quasinormal mode wavefunction f(y) is plotted in figure 10 for ym = 10.

C. Numerical error

To perform the numerical integration in section 4, we used the NDSolve routine provided

by Mathematica [52] and checked for numerical error in a variety of ways. We used the

spatial error estimate provided by NDSolve, we checked the constraint equations, and we

compared the numerical integration results for different grid spacings.

The routine NDSolve produces a warning if its internal spatial error estimate exceeds

a threshold. None of the numerical results we present here generated such warnings. This

spatial error estimate is formed by considering the final step in the numerical propagation.

One additional time step is made both with the original grid and with a coarser grid with

half the number of grid points. Using the Richardson extrapolation formula, Mathematica

produces a warning if the difference |y2−y1|
2p−1 > 10, where y2 and y1 are the resulting values

of the function for the two different choices of grid and p is the order of the discretization

routine that converts derivatives into differences, the default value of which is p = 4.

The norm |y2−y1| involves a scaled sum over the difference between y2 and y1 which the

documentation of NDSolve does not describe in detail.

We made our own rough estimates of the numerical error by numerically integrating

each example twice with two different grids. If the first grid was specified to have a

minimum number of points n, the second grid would have a minimum of 2n points. The

(absolute) difference between the two integrations was kept under about 10−4.

The constraint equations (4.9), if satisfied by the initial conditions, should remain sat-

isfied at all later times. But unless special steps are taken when converting derivatives into

finite differences, the differencing scheme will no longer preserve the constraint equations

exactly. The extent to which the constraint equations are satisfied at later times is thus an

indirect measure of the accumulated numerical error. In the numerical results presented
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here, we checked the constraints at a handful of points and found that they differed from

zero only by about 10−6.
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